The new Swedish National Air Quality Plan

and

Swedish 2018 IAM developments

Stefan Åström, IVL Swedish Environmental Research Institute
With thanks to Maria Ullerstam and Anna Engleryd for sharing EPA
information

Sweden's NEC Directive commitments

base year 2005

	NO _X	SO ₂	NMVOC	NH ₃	PM2,5
2020	36 %	22 %	25 %	15 %	19 %
2025	-	-	-	-	-
2030	66 %	22 %	36 %	17 %	19 %

Gap analysis

	NO _X	SO ₂	NMVOC	NH ₃	PM2,5
2020				- 1 kt	
2025				- 0,5 kt	
2030	- 13 kt				

National air pollution control program – strategy for cleaner air

Action areas

- Ammonia in the agricultural sector (2 kton)
- Nitrogen oxides in industry, and electrical and district heating (3-9 kton)
- Nitrogen oxides in the transportation sector (6-7 kton)

Focus areas

- Improved air quality in urban areas
- Better synergies between climate and air
- Reduced negative effects on ecosystems
- International cooperation

Action area 1 – Ammonia, agriculture

	kiloton/year	Cost, M€/year
Bandspreading of manure instead of broadcasting	0.7	2.4
Incorporation of surface applied manure within the same day	0.5	0.6
Tight lid on storage for urine-based manure	0.6	1.0
Total	1.8	4.0

Action area 2 – Nitrogen oxides, industry

	kiloton/ year	Cost, M€/ year
Improved flue gas cleaning at existing combustion plants	2 (1 – 3)	25.5*
Installation of abatement technology, soda boilers	0,8 (0,2 – 1,4)	(3.5 – 23.5)*
Installation of abatement technology, lime kilns	0,7 (0,5 – 0,9)	
Installation of abatement technology, gas boilers	0,4 (0,3 – 0,5)	
Installation of abatement technology, sulfite boilers	0,4 (0,3 – 0,6)	
Energy efficiency and lignin recovery	1,3 (0,6 – 2,1)	
Total	5,6 (2,9 – 8,5)	

Action area 3 – Nitrogen oxides, transport

	kiloton/ year	Cost, M€/year
Measures to reach the climate objective for domestic transport by 2030 *	5 (4 – 5)	
Phasing out older cars, diesel	1,7	
Phasing out older lite trucks, diesel	0,3	
Total	7 (6 – 7)	

SCAC 2 – Swedish Clean Air and Climate Research Programme Phase 2 Hemispheric transport of air pollutants, impacts and abatement strategies 2017 – 2020

Methods and models for identifying costeffective abatement strategies (WP4)

- Robustness check of IAM and CBA models (and model input) used for international air pollution policies
- How much of the Swedish decoupling of SO₂ emissions from economic growth was due to dedicated SO₂ control options?
- Is the relative cost-effectiveness of SLCP control options (i.e. ranking) affected by the choice of climate metric used when calculating cost-effectiveness?
- To what extent will differences in economic perspectives affect the modelled costs of reducing emissions?
- Comparing the cost-effectiveness of land-based emission reductions and emission reductions from international shipping.

Exampels of robust IAM & CBA results

Examples of sensitive IAM & CBA results

Thank your for your attention

Stefan Åström

Stefan.Astrom@ivl.se

